Login Form




Friday, September 2, 2011


This homemade machine from OpenPCR amplifies DNA samples—just like a professional device.

This homemade machine from OpenPCR amplifies DNA samples—just like a professional device.
Photo: Justin Fantl

A tiny spare bedroom is not an ideal space for a high tech biofabrication facility. To get to the one Josh Perfetto is putting together, visitors must walk all the way to the back of his mostly unfurnished house in Saratoga, California—through the kitchen, past some empty rooms, across a den with a lone couch—then climb a poorly lit staircase and round a corner. The room itself is about 120 square feet and has one big window with a view of an adjacent roof. There’s an 8-foot-wide gap in the middle; the rest of the room is for science. “I thought about moving the lab to the empty living room downstairs,” Perfetto says. “I really need more space. But that’s right by the front door. I don’t want to freak people out.”

He laughs a little awkwardly, and it’s easy to see why he’s worried. With its Pyrex containers on metal racks and other clinical-looking equipment, the bedroom looks perfect for cooking crystal meth. A mass of wires spills out of a wooden box; on top sits a metal plate punched full of holes. A table holds several laptops, test tubes, a box of purple surgical gloves, a rack with pipettes in various sizes, rubber tubes connected to vials, an orange plastic box with a blue light in the bottom, and a centrifuge that looks like an oversize rice cooker. The wooden box is actually a homemade device for doing polymerase chain reactions (PCR), a process that turns small samples of DNA into quantities large enough to analyze. And the orange plastic thing runs gel electrophoresis, a way to sort DNA strands by size. Perfetto, an engineer, built a few of the gadgets himself.

“I’ve been sleeping in here,” says Mackenzie Cowell, Perfetto’s business partner. “And who knows what kinds of chemicals have soaked into this rug!” He flew out to California from Boston a week earlier and has been working with Perfetto on a DIY genomics kit to sell through their new business, CoFactor. The problem is, right now extracting and amplifying DNA at home still takes too many steps. The guys are worried that people won’t enjoy the process if it’s too complicated.

And the home audience is their target market. Cowell is the cofounder of DIYbio, a worldwide network of “biohackers” dedicated to creating pop-up labs and doing biology outside the traditional environments of universities and industry. But when he ran into Perfetto at the 2010 Bay Area Maker Faire, the two men agreed that community labs just aren’t as exciting as they sound. Not yet anyway. Looking at your blood under a microscope is the opposite of innovation—it’s arts and crafts. “People would jump up and say, ‘I want to do this. What do I do?’ And no one had any good ideas. Or the ideas were too complicated to be translated into a starter project,” Cowell says. Before the burgeoning world of garage labs could really take off, it needed to be easier for people to get their own home projects started. And the barrier to entry wasn’t education or even space. It was a lack of affordable tools. CoFactor aims to supply them.

Science is all about coming up with smart ways to answer hard questions. But sometimes getting those answers requires expensive machines. Physicists looking to understand the universe don’t just set up a pendulum anymore—today they build multibillion-dollar underground particle accelerators. PCR machines, critical to genetics-powered biology, start at around $6,000. And these machines, with their intricately tuned bits and pieces, aren’t friendly to the kind of void-your-warranty hacking at the heart of the maker movement (not to mention creative experimental design). In short, no amateur is going to drop tens of thousands of dollars to get a lab running, and many scientists don’t understand the inner workings of their expensive, grant-funded gadgetry well enough to whimsically crack the machines open and see how they can be modified. But thanks to the DIY revolution and Arduino, the open source circuit board, big thinkers like Cowell and engineers like Perfetto (whose OpenPCR device sells for just $599) are reverse engineering the big-budget tools. And then they’re sharing their methods with the world.

Ask people inside the biohacker movement where they think it will have the biggest impact and they talk about education—being able to do genetics in classrooms. They (regularly) bring up Sushigate, the 2008 case of New York City high school students who used DNA testing to discover that sushi restaurants and supermarkets were mislabeling their fish. The results may be cool, but for now the machines are where the real action is. Behind the scenes, engineers and science enthusiasts are teaming up to mod tools and technologies and then sell their inventions—or simply share tips on how to build them—to anyone interested. Homemade PCR devices are drawing the most attention, since anyone who wants to work with DNA has to put it through a PCR machine first.

That’s what has drawn a few hundred people to the online community surrounding Perfetto’s OpenPCR project. Polymerase chain reaction is really just a process of heating and cooling genetic material. Weill Cornell Medical College researcher Russell Durrett, cofounder of New York City’s community lab GenSpace, built one using a lightbulb, an Arduino board, an old computer fan, and some PVC pipe. Biotech advocate Rob Carlson also has a version, called the LavaAmp, that he says could be easily mass-manufactured just like any consumer product. “It doesn’t have to be a big company,” Carlson says. “The manufacturing is set up so that if anybody wanted to make 100,000, they could do that, and the quality of the resulting molecules would be just fine.”

But PCR machines are only the beginning. Keegan Cooke, a former microbial fuel cell researcher, has been selling a home-built battery called a MudWatt kit. The MudWatt creates energy by capturing electrons released when mud-borne bacteria eat metal oxides. The kit comes with an anode, a cathode, and an LED light. Users fill the box with about two cups of muck—any sort has the right microbes, though stinkier stuff seems to work better—and some leftovers from the fridge (to feed the critters). The microbes generate electricity as they eat, and the electrodes capture it to power the light. This microbial fuel cell tech isn’t good enough to be scaled up to wide use yet, but the open source model for distribution means that people can start making advances in their backyards. Cooke has already updated and modified his kit based on user feedback. “One sixth grader found that the mud in his nearby river generated almost double the power. He also recommended that we try a different material for our electrodes, and we found that it also produced double the power. It’s nice, this process of people giving us feedback and evolving the technology,” Cooke says.

Another example: Cathal Garvey’s DremelFuge. The centrifuge—a device for rapidly spinning substances to separate lighter components from heavy ones—is essential in many fields of science, but a professional-grade version can cost thousands of dollars. Garvey, a biologist in Cork, Ireland, designed one that can be made by 3-D printers—either with an at-home printer called a MakerBot or by the 3-D print-on-demand company Shapeways (for $57). The DremelFuge is a small round disk with slots that hold standard microcentrifuge tubes. It’s designed to fit snugly onto a rotary tool, which can spin the tubes at 33,000 rpm, producing up to 51,000 g’s. (A standard professional centrifuge produces only about 24,000 g’s.) Garvey gave his DremelFuge a Creative Commons Attribution ShareAlike license, meaning it can be used or remixed by anyone.


Post a Comment

New Block

Enter Block content here...

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam pharetra, tellus sit amet congue vulputate, nisi erat iaculis nibh, vitae feugiat sapien ante eget mauris.